You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image , which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.
Example 1:
Given input matrix = [ [1,2,3], [4,5,6], [7,8,9]],rotate the input matrix in-place such that it becomes:[ [7,4,1], [8,5,2], [9,6,3]]
Example 2:
Given input matrix =[ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6, 7], [15,14,12,16]], rotate the input matrix in-place such that it becomes:[ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11]]
在计算机图像处理里,旋转图片是很常见的,由于图片的本质是二维数组,所以也就变成了对数组的操作处理,翻转的本质就是某个位置上数移动到另一个位置上,比如用一个简单的例子来分析:
1 2 3 7 4 1
4 5 6 --> 8 5 2
7 8 9 9 6 3
对于90度的翻转有很多方法,一步或多步都可以解,我们先来看一种直接的方法,对于当前位置,计算旋转后的新位置,然后再计算下一个新位置,第四个位置又变成当前位置了,所以这个方法每次循环换四个数字,如下所示:
1 2 3 7 2 1 7 4 1
4 5 6 --> 4 5 6 --> 8 5 2
7 8 9 9 8 3 9 6 3
解法一:
class Solution {public: void rotate(vector> &matrix) { int n = matrix.size(); for (int i = 0; i < n / 2; ++i) { for (int j = i; j < n - 1 - i; ++j) { int tmp = matrix[i][j]; matrix[i][j] = matrix[n - 1 - j][i]; matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j]; matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i]; matrix[j][n - 1 - i] = tmp; } } }};
还有一种解法,首先以从对角线为轴翻转,然后再以x轴中线上下翻转即可得到结果,如下图所示(其中蓝色数字表示翻转轴):
1 2 3 9 6 3 7 4 1
4 5 6 --> 8 5 2 --> 8 5 2
7 8 9 7 4 1 9 6 3
解法二:
class Solution {public: void rotate(vector> &matrix) { int n = matrix.size(); for (int i = 0; i < n - 1; ++i) { for (int j = 0; j < n - i; ++j) { swap(matrix[i][j], matrix[n - 1- j][n - 1 - i]); } } for (int i = 0; i < n / 2; ++i) { for (int j = 0; j < n; ++j) { swap(matrix[i][j], matrix[n - 1 - i][j]); } } }};
最后再来看一种方法,这种方法首先对原数组取其转置矩阵,然后把每行的数字翻转可得到结果,如下所示(其中蓝色数字表示翻转轴):
1 2 3 1 4 7 7 4 1
4 5 6 --> 2 5 8 --> 8 5 2
7 8 9 3 6 9 9 6 3
解法三:
class Solution {public: void rotate(vector> &matrix) { int n = matrix.size(); for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { swap(matrix[i][j], matrix[j][i]); } reverse(matrix[i].begin(), matrix[i].end()); } }};
参考资料: